
NDEx, the Network Data Exchange: Supplemental Materials
This document provides supplemental information about the version of NDEx described in the
paper, the v1.2 release on July 2015. It includes discussions of the network data model, import-
export formats, tracking of provenance, and the NDEx server API. It also provides user
documentation for the NDEx web user interface and two associated utilities. Apart from sections
2 and 6, all materials are derived from the NDEx online documentation (www.ndexbio.org).
Because the online documentation will be revised and expanded over time, we recommend that
you consult that resource for the latest information on NDEx.

NDEx, the Network Data Exchange: Supplemental Materials ... 1	
1. Open Source .. 2	
2. Related Resources .. 4	
3. Network Formats ... 10	
4. NDEx Basics .. 24	
5. Data Model ... 41	
6. Metrics ... 51	
7. Provenance .. 52	
8. REST API ... 59	
9. CyNDEx .. 71	
10. NDEx Sync ... 78	

1. Open Source

NDEx License
All NDEx software included in the NDEx Sources section below is available under the following
BSD license:

Copyright	 (c)	 2013,	 2015,	 The	 Regents	 of	 the	 University	 of	 California,The	
Cytoscape	 Consortium	 	 	 	 All	 rights	 reserved.	

Redistribution	 and	 use	 in	 source	 and	 binary	 forms,	 with	 or	 without	
modification,	 are	 permitted	 provided	 that	 the	 following	 conditions	 are	 met:	

1.	 Redistributions	 of	 source	 code	 must	 retain	 the	 above	 copyright	 notice,	
this	 list	 of	 conditions	 and	 the	 following	 disclaimer.	

2.	 Redistributions	 in	 binary	 form	 must	 reproduce	 the	 above	 copyright	 notice,	
this	 list	 of	 conditions	 and	 the	 following	 disclaimer	 in	 the	 documentation	
and/or	 other	 materials	 provided	 with	 the	 distribution.	

3.	 Neither	 the	 name	 of	 the	 copyright	 holder	 nor	 the	 names	 of	 its	 contributors	
may	 be	 used	 to	 endorse	 or	 promote	 products	 derived	 from	 this	 software	 without	
specific	 prior	 written	 permission.	

	

THIS	 SOFTWARE	 IS	 PROVIDED	 BY	 THE	 COPYRIGHT	 HOLDERS	 AND	 CONTRIBUTORS	 “AS	 IS”	
AND	 ANY	 EXPRESS	 OR	 IMPLIED	 WARRANTIES,	 INCLUDING,	 BUT	 NOT	 LIMITED	 TO,	 THE	
IMPLIED	 WARRANTIES	 OF	 MERCHANTABILITY	 AND	 FITNESS	 FOR	 A	 PARTICULAR	 PURPOSE	
ARE	 DISCLAIMED.	 IN	 NO	 EVENT	 SHALL	 THE	 COPYRIGHT	 HOLDER	 OR	 CONTRIBUTORS	 BE	
LIABLE	 FOR	 ANY	 DIRECT,	 INDIRECT,	 INCIDENTAL,	 SPECIAL,	 EXEMPLARY,	 OR	
CONSEQUENTIAL	 DAMAGES	 (INCLUDING,	 BUT	 NOT	 LIMITED	 TO,	 PROCUREMENT	 OF	
SUBSTITUTE	 GOODS	 OR	 SERVICES;	 LOSS	 OF	 USE,	 DATA,	 OR	 PROFITS;	 OR	 BUSINESS	
INTERRUPTION)	 HOWEVER	 CAUSED	 AND	 ON	 ANY	 THEORY	 OF	 LIABILITY,	 WHETHER	 IN	
CONTRACT,	 STRICT	 LIABILITY,	 OR	 TORT	 (INCLUDING	 NEGLIGENCE	 OR	 OTHERWISE)	
ARISING	 IN	 ANY	 WAY	 OUT	 OF	 THE	 USE	 OF	 THIS	 SOFTWARE,	 EVEN	 IF	 ADVISED	 OF	 THE	
POSSIBILITY	 OF	 SUCH	 DAMAGE.	

NDEx Sources
All NDEx Sources are stored on GitHub in publicly accessible repositories under the ndexbio
organization:https://github.com/ndexbio

The following repositories support released NDEx software. For all other repositories under
ndexbio, we advise you to consult with the NDEx team on their status before using. Some are in
active development while others may be obsolete or highly experimental.

NDEx Server
• https://github.com/ndexbio/ndex-rest

• https://github.com/ndexbio/ndex-object-model

• https://github.com/ndexbio/ndex-common

NDEx Web App

• https://github.com/ndexbio/ndex-webapp

NDEx Java Client
NDEx Java Client is not an application; it is a library available for use by developers to create
Java applications that access NDEx.

• https://github.com/ndexbio/ndex-java-client

• https://github.com/ndexbio/ndex-object-model

CyNDEx Cytoscape App

• https://github.com/ndexbio/ndex-cytoscape-app

• https://github.com/ndexbio/ndex-java-client

• https://github.com/ndexbio/ndex-object-model

NDEx Sync Copier Utility

• https://github.com/ndexbio/ndex-sync

• https://github.com/ndexbio/ndex-java-client

• https://github.com/ndexbio/ndex-object-model

2. Related Resources

Comparison of NDEx to Other Network Resources
NDEx, the Network Data Exchange is an online resource to enable collaboration and publication
using biological networks. It is a “commons”, a scientist-driven data exchange where both
individuals and organizations can share networks of any type, from pathway models and
interaction maps in standard formats to novel data-driven knowledge. Further, NDEx is
infrastructure supporting data publication and application development by accessioning
networks and presenting an API where they can be searched and accessed in a reproducible
manner.

We believe that this focus differentiates NDEx from the array of biological network resources
currently available to biologists. In many cases NDEx is complementary to the missions of
existing network resources, potentially playing roles as a novel distribution channel, a user
content management component, or a source for staging of pre-publication content.

This document summarizes 42 biological network resources in comparison to NDEx. Most of
these resources can be categorized either as repositories of network structured information, as
analysis applications that operate on input data (such as gene lists) via techniques that use one
or more reference networks, or as both.

“Repositories” in this context, means resources where the network content is managed by the
organization maintaining the resource, and is therefore different from the structure of NDEx in
which the users manage the network content. Some well-known examples of repositories
include KEGG (http://www.genome.jp/kegg/pathway.html), Pathway Commons
(http://www.pathwaycommons.org/about/), IntAct (http://www.ebi.ac.uk/intact/), and BioCyc
(http://biocyc.org/).

Many repositories also differ from NDEx because they use specific network formats and models
of biology, in contrast to the NDEx strategy of supporting many formats in a common
framework. NDEx provides a novel distribution strategy for organizations that maintain
repositories, a new channel for their content to reach users and applications.

Analysis applications using network resources include sites such as GeneMania
(http://www.genemania.org/) and NCI DAVID (https://david.ncifcrf.gov/). Although NDEx
provides some search and query operations that could be construed as “analysis”, its mission is
not to perform biological analyses but instead to be a service that facilitates the creation of
applications, both as a source of reference networks and as a place for users to store network-
structured analysis results. A recent example of a network-oriented analysis application is
Network Portal by the Institute for Systems Biology (http://networks.systemsbiology.net/), which
“provides analysis and visualization tools for selected gene regulatory networks to aid
researchers in biological discovery and hypothesis development.” Its design includes several
features to promote data sharing and integration with other applications, but its primary focus is
analysis, using networks of transcriptional regulation, distinct from the NDEx mission.

WikiPathways (http://www.wikipathways.org/index.php/WikiPathways) is a pioneering
collaborative platform for the curation of biological pathways, a resource that shares the NDEx
goal of facilitating scientific discourse by providing a platform for user-driven content. It differs,
however, in that (1) it is focused on pathway diagrams that are small, curated, and in which the
content may not be fully represented as a network and (2) it employs the “Wiki” model of
collaboration on a public document, different from the “Google Docs” approach of NDEx in
which users manage the access to their networks. The role of NDEx in the context of

collaborative environments such as WikiPathways could be as a “back end” resource to store
and share the content created by the collaborators.

BioModels at EBI (https://www.ebi.ac.uk/biomodels-main/) is an example of a database of
biological information that could be considered a network resource, but which is different from
NDEx not only because the content is managed but also because it is specialized to a particular
kind of biological data structure. Biomodels is a “repository of computational models of biological
processes”, serving as resource for the computational modeling community. Although there are
forms of these computational models that can be expressed as networks (and which NDEx may
support at some point), BioModels presents these models in a comprehensive manner tailored
to the needs of its user community

Resources
The following sections present a list of network repositories and selected examples of network-
oriented analysis applications. The repositories include both those that are based on curated
mechanistic information (“pathways”) and those that are focused on interaction data. (Special
thanks to the maintainers of PathGuide http://www.pathguide.org/. PathGuide was an invaluable
resource in preparing this document.)

Aggregators of Network Resources
Pathway Commons - http://www.pathwaycommons.org/about/

• “Pathway Commons is a network biology resource and acts as a convenient point of
access to biological pathway information collected from public pathway databases,
which you can search, visualize and download.”

• Aggregator of network repository data from many sources
• Normalizes resources to BioPAX3
• Distributes in SIF and BioPAX3 formats

iRefIndex - http://irefindex.org/wiki/index.php?title=iRefIndex

• “Provides an index of protein interactions available in a number of primary interaction
databases including BIND, BioGRID, CORUM, DIP, HPRD, InnateDB, IntAct, MatrixDB,
MINT, MPact, MPIDB, MPPI and OPHID.”

Protein-Protein and Other Molecular Interaction Networks

BIND Biomolecular Interaction Network Database

• Bader et al, Nucl. Acids Res. (2003) 31 (1): 248-250.
• No longer maintained, content incorporated in several other repositories

BioGRID - http://thebiogrid.org/

• “BioGRID is an interaction repository with data compiled through comprehensive
curation efforts.”

• Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark
C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam

A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K, Tyers M. The
BioGRID interaction database: 2015 update. Nucleic Acids Research. Nov. 2014, [
Pubmed]

CCSB Interactome - http://interactome.dfci.harvard.edu/

• A repository of experimentally derived protein interactions

DIP Database of Interacting Proteins - http://dip.doe-mbi.ucla.edu/dip/Main.cgi

• “The DIPTM database catalogs experimentally determined interactions between proteins.”

IntAct molecular interaction database - http://www.ebi.ac.uk/intact/

• A central, standards-compliant repository of molecular interactions, including protein–
protein, protein–small molecule and protein–nucleic acid interactions.

• IntAct provides both an open source database system and analysis tools for molecular
interaction data.

• The MIntAct project--IntAct as a common curation platform for 11 molecular interaction
databases. Orchard S et al [PMID: 24234451]
Nucl. Acids Res. (2013) doi: 10.1093/nar/gkt1115

NetPro - http://www.molecularconnections.com/home/en/home/products/netPro

• “NetPro™ is a comprehensive database of Protein-Protein and Protein-Small molecules
interaction, consisting of more than 320,000 interactions captured from more than 1500
abstracts, approximately 1600 published journals and more than 60,000 references.”

STRING - http://string-db.org/

• “STRING is a database of known and predicted protein interactions.
The interactions include direct (physical) and indirect (functional) associations.”

MINT: Molecular INTeraction database - http://mint.bio.uniroma2.it/mint/Welcome.do

• “MINT focuses on experimentally verified protein-protein interactions mined from the
scientific literature by expert curators.”

• Now integrated with IntAct.

RNA-binding protein database RBPDB - http://rbpdb.ccbr.utoronto.ca/

• Repository of RNA-protein interactions.

BioLiP - http://zhanglab.ccmb.med.umich.edu/BioLiP/

• “BioLiP is a semi-manually curated database for high-quality, biologically relevant ligand-
protein binding interactions.”

BindingDB - http://www.bindingdb.org/bind/index.jsp

• “BindingDB is a public, web-accessible database of measured binding affinities, focusing
chiefly on the interactions of protein considered to be drug-targets with small, drug-like
molecules.”

Transfac - http://www.gene-regulation.com/index2

• Commercial repository of gene regulation interactions, subset available for academic
use.

iMEX - http://www.imexconsortium.org/

• “A non-redundant set of protein-protein interaction data from a broad taxonomic range of
organisms”

• Protein interaction data curation: the International Molecular Exchange (IMEx)
consortium Nat Methods 2012, 9, 345-350

TAP Project - http://tap.med.utoronto.ca/exttap/

• “The Yeast TAP Project is aimed at elucidating the entire network of protein-protein
interactions in a model eukaryotic organism, namely the yeast Saccharomyces
cerevisiae.”

• Repository derived from experimental data using tandem affinity purification (TAP).

Pathway Network Resources

Netpath - http://www.netpath.org/

• “'NetPath' is a manually curated resource of signal transduction pathways in humans.”

NCI-Nature Pathway Interaction Database - http://pid.nci.nih.gov/

• “Biomolecular interactions and cellular processes assembled into authoritative human
signaling pathways”

• Cancer focused
• Soon to use NDEx and Pathway Commons as its primary distribution mechanisms, will

no longer be updated.

Reactome - http://www.reactome.org/

• “Reactome is a free, open-source, curated and peer reviewed pathway database. Our
goal is to provide intuitive bioinformatics tools for the visualization, interpretation and
analysis of pathway knowledge to support basic research, genome analysis, modeling,
systems biology and education.”

• Includes analysis tools.

SignaLink Database - http://signalink.org/

• “SignaLink 2.0: An integrated resource to analyze signaling pathway cross-talks,
transcription factors, miRNAs and regulatory enzymes”

• Includes analysis tools.
• SignaLink 2.0 - A signaling pathway resource with multi-layered regulatory

networksFazekas D*, Koltai M*, Türei D*, Módos D, Pálfy M, Dúl Z, Zsákai L, Szalay-
Bekő M, Lenti K, Farkas I J, Vellai T, Csermely P, Korcsmáros T (* equal contributions)
BMC Systems Biology 2013, 7:7.

WikiPathways - http://www.wikipathways.org/index.php/WikiPathways

• “WikiPathways is an open, public platform dedicated to the curation of biological
pathways by and for the scientific community.”

• User submitted content. Wiki model, related but not identical to NDEx “exchange” model.
• Pathway diagrams are sometimes only partially computable, incorporating graphic

elements with meaning apparent to the biologist but difficult for algorithms to interpret.

BioCyc Database Collection - http://biocyc.org/

• “BioCyc is a collection of 5711 Pathway/Genome Databases (PGDBs), plus software
tools for understanding their data. “

• Includes EcoCyc and MetaCyc.
• Repository of pathway networks with a focus on metabolism.

KEGG PATHWAY Database - http://www.genome.jp/kegg/pathway.html

• Repository of pathway networks and interactions
• Manual curation of both relationships and diagrams

MANET database - http://manet.illinois.edu/aboutManet.php

• “The Molecular Ancestry Network (MANET) database project traces evolution of protein
architecture onto biomolecular networks.”

Small Molecule Pathway Database (SMPDB) - http://smpdb.ca/

• “An interactive, visual database containing more than 618 small molecule pathways
found in humans.”

• Extensive, carefully formatted diagrams
• Jewison T, Su Y, Disfany FM, et al. SMPDB 2.0: Big Improvements to the Small

Molecule Pathway DatabaseNucleic Acids Res. 2014 Jan;42(Database issue):D478-84.
• Exports in BioPAX3 and SBGN

Atlas of Cancer Signaling Networks - https://acsn.curie.fr

• “ACSN is a pathway database and a web-based environment that contains a collection
of interconnected cancer-related signaling network maps”

• Unique graphic interface
• Uses SBGN created with Cell Designer

UCSD Signaling Gateway - http://www.signaling-gateway.org/molecule/

• “The UCSD Signaling Gateway Molecule Pages provide essential information on over
thousands of proteins involved in cellular signaling.”

• Includes links to pathways in several repositories.

SPIKE - http://www.cs.tau.ac.il/~spike/

• “SPIKE is a database of highly curated human signaling pathways with an associated
interactive software tool.”

• Incorporates information from other repositories in the curation process.

BIGG - http://bigg.ucsd.edu/

• “BiGG is a knowledgebase of Biochemically, Genetically and Genomically structured
genome-scale metabolic network reconstructions”

HumanNet - http://www.functionalnet.org/humannet/

• “A probabilistic functional gene network of 18,714 validated protein-encoding genes of
Homo sapiens (by NCBI March 2007), constructed by a modified Bayesian integration of
21 types of 'omics' data from multiple organisms, with each data type weighted
according to how well it links genes that are known to function together in H. sapiens.”

Ingenuity – IPA - http://www.ingenuity.com/products/ipa

• Large proprietary database of molecular interactions integrated with analysis tools

ThomsonReutersMetabase - http://thomsonreuters.com/en/products-services/pharma-life-
sciences/pharmaceutical-research/metabase.html

• Large proprietary database
• “Manually curated database of mammalian biology and medicinal chemistry data”

Pathway Studio - http://www.elsevier.com/solutions/pathway-studio

• Large proprietary database integrated with analysis tools

Related Biological Repositories

BioModels - https://www.ebi.ac.uk/biomodels-main/

• BioModels Database is a “repository of computational models of biological processes”.
• Models described from literature are manually curated and enriched with cross-

references.

The Cell Collective - http://thecellcollective.org

• Virtual cell models for simulations
• Related to NDEx in that they also support a “crowdsourcing” strategy.

BioCarta - http://www.biocarta.com/genes/index.asp

• Curated pathway diagrams
• Not a network resource – only diagrams and gene lists are available, no computable

connectivity.

Selected Examples of Network-Oriented Analysis

GeneMania - http://www.genemania.org/

• “GeneMANIA finds other genes that are related to a set of input genes, using a very
large set of functional association data.”

Network Portal - http://networks.systemsbiology.net/

• “Provides analysis and visualization tools for selected gene regulatory networks to aid
researchers in biological discovery and hypothesis development.”

DAVID - https://david.ncifcrf.gov/

• Gene set analysis enrichment scoring includes pathways.

MSigDB - http://www.broadinstitute.org/gsea/msigdb/index.jsp

• Gene set analysis enrichment scoring includes pathways.

GenomeSpace - http://www.genomespace.org

• “GenomeSpace is a cloud-based interoperability framework to support integrative
genomics analysis through an easy-to-use Web interface.”

• Integration includes network-oriented tools.

Cytoscape - http://www.cytoscape.org/

• “An open source software platform for visualizing molecular interaction networks and
biological pathways and integrating these networks with annotations, gene expression
profiles and other state data.”

• Desktop application, but accesses web resources.

3. Network Formats

Import and Export of Network File Formats
For All Network Types
Each network has a “sourceFormat” attribute that records the format in which it was imported or
otherwise created.It is maintained by the NDEx Server and currently cannot be changed by the
user.

SIF and Extended Binary SIF Networks
The simple interaction format is convenient for building a graph from a list of interactions. It also
makes it easy to combine different interaction sets into a larger network, or add new interactions
to an existing data set.

1. If a tab ‘\t’ character is found in the first line of the file. The SIF is treated as tab
delimited, otherwise it is parsed as a whitespace delimited file.

2. In NDEx, each line in a SIF network file is mapped to a NDEx edge object. The
“relationship type” field in that line maps to the predicate of that edge. Each edge has
one source node and one or more target nodes depend on the number of target nodes in
that line.

3. Each node field in the SIF file is mapped to an NDEx node object. If the value of the
“node field” is a URI or CURIE formated string, the NDEx server will create a BaseTerm
object based on the string and then create a Node to represent that base term. If the
value of the “node field” is a simple literal text, no BaseTerm will be created, only a Node
will be created and the “name” attribute of the node will have the value of the “node
field”.

4. If the SIF file is an Extended Binary SIF file, a header line will define columns that are
treated in the following manner:

1. the “INTERACTION_PUBMED_ID” field will be used to create linked Citation
objects.

2. “PARTICIPANT_NAME” field will be used to populate the “name” attribute of the
node.

3. “UNIFICATION_XREF” field will be used to create an alias of a node.

4. “RELATIONSHIP_XREF” field will be used to create related terms of a node.

5. The “NAME” field in the Extended Binary SIF Property header will be use to set
the name of the network. “ORGANISM” and “URI DATASOURCE” are treated as
properties of the network.

OpenBEL Networks

The OpenBEL Language

OpenBEL (www.openbel.org) is the public standard for the BEL language. It is designed to
represent scientific findings by capturing causal and correlative relationships in context, where
context can include information about the biological and experimental system in which the
relationships were observed, the supporting publications cited and the curation process used.

A BEL document is a set of statements representing specific assertions from cited information
resources. Statements are, in most cases, triples with context annotations. The most common
type of context annotation are specialized structures to cite specific supporting evidence from
knowledge sources, but a more general mechanism allows the annotation of biological contexts
such as species, cell type, or cell line. When encoded as a network, a BEL document may have
multiple edges of the same type between two nodes, each edge representing a different
assertion from a different citation.

 BEL documents are not primarily intended as a format for biological inference, but rather as a
means to store reusable facts in a form that is well suited to the assembly of purpose-built
biological models. Assembly can be automated or may be the result of manual selection and
incorporation of findings to produce a specialized model. The choice of assembly algorithm and
parameters will lead to different output models for the same input BEL documents.

 A particular form of assembled biological model suitable for some types of qualitative causal
reasoning and for visualization is the “Knowledge Assembly Model” (KAM). NDEx networks are
in principle capable of expressing KAM structures, but as of NDEx v1.2, there are no examples
of KAMs in NDEx.

 BEL is distinct from many other biological representation schemes in that it employs a system
in which all concepts referenced in statements, such as protein abundances, complexes,
modified proteins, or reactions are represented by functional composition of terms. This system
is supported directly in NDEx networks using FunctionTerm network elements.
BEL documents are expressed in:

• XBEL, an XML format.

• BELScript, a line-oriented text format designed for human readability and composition.

• BEL RDF
NDEx currently supports import and export utilities for XBEL. The following section describes
the rules used to transform BEL documents to and from NDEx Networks and XBEL.

NDEx Import rules
XBEL is an XML format in which XML nodes representing BEL statements are grouped by
nested nodes that set the biological and citation context annotations for each statement that
they contain. The context annotations from outer contexts apply to the statements of inner
contexts unless specifically contradicted by annotations in inner contexts.

The following rules are applied based on the type of XML node processed:

• Header

• name, description and version are mapped to Network.name, Network.description
and Network.version respectively.

• “copyright”, “contactInfo” and “Disclaimer” are stored as network properties.
• Author list in AuthorGroup are flattened and each author name is stored as an

individual property in the network. LicenseGroup is stored in the similar way.

• NamespaceGroup

o Elements are stored as Namespace objects in NDEx network.

• annotationDefinitionGroup

o internalAnnotationDefinition

§ the “id” attribute is mapped to a Namespace object.

§ “description” and “usage” are stored as properties in the Namespace
object.

§ “listAnnotation” elements are flattened and stored as properties in the
Namespace object.

o annotationDefinitionGroup

§ Each element is stored as a Namespace object in the Network.

• statementGroup

o If element “name” or “comment” exists in statement group.

§ if a citation exists in the annotationGroup at the same level, “name” and
“comment” are treated as properties of the citation.

§ if a support exists in the annotationGroup at the same level, “name” and
“comment” are treated as properties of the support.

§ otherwise “comment” are stored as properties for each statement in the
current statementGroup and it will be also passed on to the next level of
statementGroup. “name” will be ignored in this case.

• annotationGroup

o evidence is mapped to a Support object in the Network.

o citation is mapped to a Citation object in the Network.

o annotations are stored as NDExPropertyValuePair objects on each edge (or
node if the statement is mapped to a orphan node).

• statement
o Case 1: statement has subject, object, and predicate

1. statement maps to NDEx Edge element
o Case 2: statement does NOT have object

1. statement maps to NDEx Node element
2. node may be an “orphan” with no edges, or possibly other edges will

reference the node.
o Case 3: statement object is a statement expression, S2

1. statement object is encoded by a node that represents a
ReifiedEdgeTerm

2. The ReifiedEdgeTerm references an edge that is created based on S2

o A comment attribute of a statement is stored as a property of the Network
element that it is mapped to, i.e. either an edge or node.

XGMML Networks
The XGMML standard is defined by the Cytoscape application. The version of XGMML
exported by different versions of Cytoscape are annotated with version strings. The current
version of Cytoscape produces an XML document in which the <graph> element has a property
of cy:documentVersion=”3.0″

Handling of XGMML Network Properties

Properties of a network in XGMML are stored in several places within the document. Some of
these properties are shared by all XGMML files.

The main <graph> element has the following properties in XGMML 3.0:
• id=<id of the graph at the time it was exported from Cytoscape>

• label=<label on the graph at the time it was exported from Cytoscape>

• directed=”1″

o whether the edges should be treated as directional

• cy:documentVersion=”3.0″

o XGMML version

The <graph> element also has these constant properties, common to all XGMML 3.0 files. Note
that the URI for the XGMML namespace does not respond as of the NDEx v1.2 release.

• xmlns:dc=”http://purl.org/dc/elements/1.1/”

o Dublin Core namespace

• xmlns:xlink=”http://www.w3.org/1999/xlink”

• xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

o RDF namespace root

• xmlns:cy=”http://www.cytoscape.org”

o Cytoscape namespace root

• xmlns=”http://www.cs.rpi.edu/XGMML”

o XGMML namespace

Within the <graph> element is an attribute: <att name=”networkMetadata”> This contains RDF
that expresses properties of the network using standard ontologies, especially Dublin Core.
Properties typically include:

• <dc:type>

o A type descriptor of the network – intended for semantic categories, such as
“Protein-Protein Interaction”.

• <dc:description>

o NOT SUPPORTED in Cytoscape, always outputs “N/A”

• <dc:identifier>

o Some standard identifier for the network, defaults to “N/A”

• <dc:date>

o Creation date of network

• <dc:title>

o Title of network.

o Often identical to label property of <graph>, but not clear that this is always true

• <dc:source>

o Source of the network

o All XGMML networks exported from Cytoscape list http://www.cytoscape.org/ as
the source

• <dc:format>Cytoscape-XGMML</dc:format>

o All XGMML networks have this value for their dc:format attribute

An XGMML network may have additional attribute <att> elements within the <graph> element.
In XGMML 1.1, a number of graphics properties of the entire network are expressed as
attributes, such as:

<att type=”real” name=”GRAPH_VIEW_ZOOM” value=”0.41322728443244305″/>

In XGMML 3.0, a separate <graphics> element within the <graph> element separates the
graphic <att> elements of the network from other attributes.

Treatment of XGMML Properties
XGMML->NDEx

• All Graphics attributes are ignored as of NDEx v1.2

o Note that if a particular XGMML network has general properties that, by name,
imply that they are graphics attributes, they are handled as any other property.
For example, a node might have a general property ‘color = blue’ set by the user,
but that is not encoded as a graphics attribute, as it would if it had been set in
Cytoscape using graphic attribute facilities.

• XGMML RDF in the networkMetadata attribute are stored as NDEx Network properties

o (Note that the stored properties reference the Dublin Core namespace (dc) when
used)

• All other XGMML graph attributes are stored as NDEx Network properties

NDEx->XGMML

• No presentation properties are output to XGMML.

• All properties recognized as networkMetadata are expressed in the RDF section

• All other NDEx Network properties are expressed as attributes of the <graph> section

Special XGMML Properties Mapped to Attributes in NDEx Network Objects
• name

o XGMML->NDEx

§ if : dc:title exists in networkMetadata<att> then dc:title ->
Network.name

§ else if name attribute in networkMetadata<att> then name ->
Network.name

§ else if label property in <graph> node then label -> Network.name

§ else: filename -> Network.name

o NDEx ->XGMML

§ Network.name ->dc:title

• description

o dc:description<->Network.description

• version

o dc:version<->Network.version

• UUID

o XGMML->NDEx

§ if NDEX:UUID exists as an <att>: NDEx will ignore this attribute and
assign a new UUID

o NDEx ->XGMML

§ Network.UUID -><graph><att>NDEX:UUID

BioPAX Networks
NDEx uses BioPAXPAXtools to parse each imported BioPAX network into an
org.biopax.paxtools.model.Model object, and then transforms the Paxtools Model object into an
NDEx network.

Translation Rules:

• The xmlBase attribute of the Paxtools model is stored as a “xmlBase” property in the
Network.

• Each BioPAXElement object is mapped to an NDEx node.

o BioPAX type is stored in the “ndex:bioPAXType” property of the NDEx Node.

o For each property on that BioPAXElement:

§ If the value of the property is a BioPAXElement object, create an Edge.

§ The subject Node of the Edge is based on this BioPAXElement
node

§ The predicate of the Edge is a BaseTerm derived from the name
of the property.

§ The object Node of the Edge is based on the value of the property

§ If the value of the property is a literal value, create an
NDExPropertyValuePair object and add it to the properties of the Node.

• For each Xref element, in addition to creating a Node, NDEx adds additional objects to
ensure that the citations and controlled vocabulary references for the Network will be
handled consistently with other Networks.

o Each PublicationXref will result in a corresponding Citation object linked to the
annotated Node.

o Each UnificationXref will add a value to the aliases attribute for the annotated
Node linking to a corresponding BaseTerm.

o Each RelationshipXref will add a value to the relatedTerms attribute for the
annotated Node, linking to a corresponding BaseTerm.

Exporting Networks
Overview

• NDEx networks can be exported as downloadable files.

• Because some export operations may take minutes to execute, exporting is handled as
a background task, similar to the processing of upload network files.

• Network files can be exported in their native format (default option) or stripped down to
the simpler SIF format: the convenience of exporting a file in SIF format is that it can be
opened and read in Microsoft Excel.

Selecting a Network For Export

• In the network display page, click the Actions button and select Export Network as File

• Click Create Task to export your file in the default native format (XBEL in this example)
or use the dropdown menu to export in SIF format.

Viewing the Export Status and Downloading Exported Networks
• The task is displayed on the right of the user’s account page, indicating its status as it

progresses from queued tostaged, to processing and then to completed.

• When the task is completed, a download link will appear.

• Click the link to download the exported file.

Uploading Networks
• In your MyAccount page, Click the blue Actions button, then select the Upload Networks

option.

• Select the file to upload by using the Choose file button in the upper left corner

• Click on the green Upload button to begin the process.

• Alternatively, select multiple files and upload them at once by clicking Upload all.

• Once the process is complete, a new task will be created. The task is a pending action
that the NDEx system will resolve.

• You can see a “network loading” task at the bottom of the screen.

Note on Cytoscape XGMML
Depending on the version you are using, Cytoscape may default to exporting XGMML files with
the extension .xml

You must either specify the .xgmml extension at export time or rename the file before importing
to NDEx. (Your operating system may warn you about changing the extension). The upload will
fail if the extension is .xml

XGMML presentation properties (layouts, styles, graphic properties) are not imported to NDEx.

• You can also view a task on the account page.

• The status will change during the upload process. When the task is done, you will see
the status change to completed. At this point, the network will be in the system and
appear at the top of the networks list in your account page.

Saving a Query Result

• In this example, the signed-in user views a large network and finds a neighborhood
based on query terms.

• The query result can be saved as a new network using the Save Current Subnetwork
option in the Actions menu.

• A dialog window will ask to confirm before saving.

• The new network is now visible on the user’s Account page.

Editing the Network Profile
• As an admin of the new network you just saved, the signed-in user can modify the

network profile information using the Edit Network Profile item in the Actions menu.

• Besides changing the network name and adding a description, you can also control the
visibility and accessibility of a network that you administrate.

• By default, your new subnetwork will be PRIVATE: this means you are the only one who
can see it and the network will not be displayed when any other user runs a search.

• You can change the visibility to DISCOVERABLE if you want the network to be visible
after a search but still want to control who has access to it. In this case, another user will
have to request access to the network and you can decide whether you want to grant
access or not.

• If you decide to make your network PUBLIC, everyone will be able to access it, even
anonymous users (users that are not logged in to an NDEx account.)

4. NDEx Basics

Creating and Using an NDEx Account

• On the NDEx landing page, select “Sign in” in the top right corner and then choose “Click
here to sign up”

• A dialog box will appear. An account name, email address, and password are required to
sign up. The system does not allow duplicate account names or email addresses.

“My Account” Screen

• Once signed up, you will land on your “My Account” page. This page has 2 tabs that will
show all the Networks and the Groups to which the account has direct access and will
look like the one in the following screenshot.

• In the image below, no networks are visible because the account has just been created.

• For the rest of this tutorial, we will use example accounts that have access to several
different networks and groups

Edit Profile

• Click the blue “Actions” menu button on the left of the user page and select “Edit Profile”

• Fill out the fields in the displayed dialog box (none of the fields are required, so any may
be left blank).

• Click submit to make the changes.
• (Note that if you do not already have an image URL, you can use an image hosting site

such as http://imgur.com to store an image and then reference it from NDEx.)

Change Password

• Navigate to the your account page.
• Click on the blue “Actions” menu button

Account Groups

• On the account page, all groups in which the user is member of can be seen by clicking
“Groups”

• Filter by name or role in group

Requests and Tasks

• Requests and Tasks relative to your account activity are displayed in the respective
panels on the right side of your account page.

• Push notifications are currently not enabled, so click on the refresh icon (indicated by
arrow in image below) to update the list: alternatively, you can use the browser refresh
button or press CTRL+R.

• Requests sent and received are displayed in separate tabs. You will receive a request
ONLY if you are the admin of a group or network another user wants to join or access,
respectively.

• Click on a received request to respond; click on a request you have sent to delete it.

• The display interface for tasks is very similar with the exception that a task can be
deleted by clicking the trash can icon.

Sign Out

• The sign out action is located on the right end side of the navigation bar.

Obtaining and Granting Access to a Network
Requesting Access to a Network

• When viewing this user’s account, one of their networks is displayed because it’s
visibility status is discoverable.

• Click on the entry to display the network.

• Only the profile information for the network is displayed

• Click on the Actions button on the left of the screen and select Ask for Access.

• A dialog box is displayed, allowing you to select the level of access requested and to

optionally add a message for the network’s admins.

• The pending request is displayed in your MyAccount page.

• Once your request has been accepted (or refused) you will see a confirmation message
and the network now appears in the display of networks to which you have access.

• The accepted request can be deleted by the user – clicking on the request displays a
deletion dialog.

Granting access to a network
If you are the admin of a network, you will be receiving requests for access (for example from
Susan Calvin) and the pending requests are displayed on your MyAccount Page.

• Click on the pending request to display the dialog to respond to the request. You may

choose to add a message for the requesting user.

Managing Network Access
If an account is the admin of a network, it can manage the access other accounts have to that
network.

• Navigate to the desired network page.

• Select the Manage Access option in the actions menu.

A new screen will display with a list of all the accounts with access to the network.

• You can change the type of access and remove access on this screen. Remember to
save your changes.

• Groups may also have access to a network.

• Additionally, you can use the simple search tools at the bottom of the page to find
groups and users you may want to grant immediate access. Users who already have
access will have a faded add button displayed.

Quick start guide

The NDEx Public Server includes a large number of networks that are marked as “PUBLIC”
and are therefore accessible without signing in to a user account. Public networks can be found,
viewed, and queried anonymously using the search bar provided in the NDEx Public Server’s
landing page.

Searching for networks
• To search for networks, type cell cycle into the search box and click the magnifying

glass or press enter:

• The network search results page is displayed below and lists several public networks:

• Now, click on a public network to view it: let’s choose the BEL Framework Small Corpus
Document… In the network display page, information about the network is available on
the left and includes the counts of nodes and edges for the entire network, version, date
of creation and UUID. Information also includes the username of the network’s
administrators.

Running a query

• To run a query on this network, use the the text box in the query controls:

• You can enter terms to query the network and specify a depth: 1-Step finds only the
immediate neighbors of the nodes.

• For example, type akt1, select a depth of 1-step and click the “Run Query” button: the
query will find a neighborhood around all nodes that reference the akt1 term. As shown
in the image below, the query has retrieved a subnetwork, a small neighborhood
consisting of “73 nodes” and “74 edges”. aAdditional useful information (such as
Citations) about nodes and edges can be obtained by analyzing the table below the
graphic representation.

Searching for users

• NDEx also allows to search for users or groups: for example, you can try to search for
Users and type the term database: the result will be a list of users that have database in
their name or profile description. Every database user has public networks that you can
browse, explore and query.

Finding and Querying Networks
The public NDEx site includes a number of networks that are marked as “PUBLIC” and are
therefore accessible without signing in to a user account. Public networks can be found, viewed,
and queried but you cannot create new networks, upload, or download without signing in.

Some Public Networks on NDEx
• A selection of networks from NCI via Pathway Commons (SIF format)

• A selection of networks from Reactome via Pathway Commons (SIF format)

• OpenBEL (BEL format)

o BEL small corpus

o BEL large corpus

Searching for Networks Based on Title and Description
• Search text can be entered directly into the navigation bar.

• The current search mode is displayed to the left of the search box and defaults to
“Networks”

• Type “cell cycle” into the search box and click the magnifying glass or press enter to
search.

• The network search results page is displayed with several results, both public and
discoverable.

• To view a discoverable network you will need to request access to its administrator.

• Click on a public network to view it: let’s choose the BEL Framework Small Corpus
Document.

View a Network Found in a Search

• Information about the network is displayed on the left, including the counts of nodes and
edges for the entire network, date of creation, UUID and links to the network
administrators profiles.

• If a network is larger than 300 edges, no graphical display will be rendered and the main
part of the page will display a table containing a sample of 500 randomly selected edges.

• The table has 3 tabs: one for Edges, one for Nodes and the last one for the Provenance
history

Advanced Search Capabilities
Advanced search capabilities (Lucene Indexing) allow users to search and query using
keywords. Lucene Indexing allows:

• Network search by keywords

• The network search function in NDEx searches the “UUID”, “name” and “description”
fields of a network.

• The network search function also searches the “base terms” and “node names” within a
network.

• Network query by keywords

• The network query function in the network page searches “base terms” and “node
names” in the network.

For more information and details about Lucene searches, please refer to the Lucene
Documentation.

Query for a Neighborhood in a Network
Although when viewing a network the table only displays a sample of 500 Edges, any queries
you perform will be always executed on the entire network. NDEx allows users to run 2 types of
queries: Simple or Advanced.

Simple Query
In the text box in the query controls, you can enter terms to query in the network and the
system will find a neighborhood around all nodes that reference those terms. The “depth” of the
query defines the resulting network: 1-Step finds only the immediate neighbors of the nodes.
For example:

• Type “akt1″, select a depth of “1-step” and click the “Run Query” button.

• The retrieved network is now a small neighborhood specified by the “akt1″ term,

consisting of “73 nodes” and “74 edges”. All the retrieved nodes and edges can be
inspected in the table and additional filtering is possible using the text box at the top of
each table’s column.

Advanced Query
As of NDEx v1.2, the Advanced Query feature allows users to query a network based on
properties associated to its nodes and/or edges.

• Click the “Back to Original Network” button and then click Advanced Query on the right
hand side.

As pictured below, the Advanced Query interface will show up, allowing you to search the
network by filtering nodes and edges based on their properties. Properties can be identified by
scrolling to the right in the Edges/Nodes table. You can select as many properties as you want
on both Edges and Nodes. Properties and their values are case-insensitive.

• For example, type “Disease” in the property text box and “Breast Neoplasms” in the
value text box, then click “Run Query”.

• The system will return a network consisting of nodes and edges where the Edges have
the Disease property defined as Breast Neoplasm.

• In addition, the Advanced Query also allows you to query a network by predicate: click
the “Back to Original Network” button, type “ndex:predicate” in the property text box,
“positive_correlation” in the value text box and then click “Run Query”:

• This time the system will return a neighborhood consisting of 74 edges whose predicate
value equals to “positive_correlation”.

Future developments will introduce auto-complete functions and drop down menus to easily
view and select the properties of interest to be used in an advanced query.

5. Data Model

NDEx Network Data Model

Overview

NDEx Supports Diverse Representations of Biology

The NDEx network data model enables the storage of networks with diverse semantics,
uploaded from files in a variety of source formats, including SIF, XGMML, XBEL, and BioPAX3.
The intent is that the NDEx data model should partially integrate these diverse network formats
to provide users and application developers with consistent handling of nodes, edges,
namespaces and identifiers, citations, properties associated with nodes and edges, and network
provenance history. The NDEx data model does not, however, standardize the representation
of biology in the networks that it stores. The meaning of the relationships indicated by edges or
the classes indicated by the types of nodes in a network may conform to a rich standard such as
BioPAX3 or OpenBEL, or they may have ad-hoc meanings unique to the particular
network. NDEx provides a common storage medium and access protocol, facilitating the use of
diverse networks by applications but not limiting the semantics that they may express.

The intent in the design of the NDEx network data model and in any utilities for loading specific
network formats is to fully preserve the information content of networks: a network file in a given
format imported to NDEx should be equivalent (though not necessarily identical) to a network
file output in a subsequent export operation using that format. As of NDEx v1.2, this intent is
realized for SIF, BioPAX3, and OpenBEL: import-export ’round-trip’ import-export cycles
preserve the content but not the details of the structure of the original file. In contrast, the
graphical and layout attributes for XGMML networks and for networks exchanged directly with
Cytoscape via the CyNDEx app are not preserved. In these cases, these presentation aspects
of the network are not stored in NDEx and are therefore not available when the network is
subsequently retrieved or exported. This is an active area of development for NDEx in
collaboration with the Cytoscape Community in which we are working to develop interchange
standards that will enable applications, including NDEx, to flexibly handle diverse presentation
schemes as modular aspects of networks. Details of the methods of encoding currently
supported formats in the NDEx data model are described in a separate document, Handling of
Network Formats, for SIF, XGMML, BioPAX3, and OpenBEL files.

NDEx is Extensible

Although NDEx provides both API and user interfaces to upload files in common formats
(XGMML, XBEL, SIF, BioPAX3), the API also provides methods to create and query networks in
a JSON format that is a serialization of the NDEx network data model. This enables researchers
and developers to create and use networks with arbitrary semantics while still taking advantage
of the common infrastructure supported by NDEx. For example, researchers might experiment
with novel representations of RNA-RNA and RNA-DNA interactions using NDEx facilities for
controlled vocabularies, citations, or terminology definition by functional composition. The
resulting networks would be benefit from NDEx-enabled applications for common functions such
as basic visualization, indexing for search, or sharing and annotation. Specialized, modular
applications (including ad hoc scripts) can then be constructed using the NDEx API to perform
analyses and visualization that depend on the novel representation choices. This pattern of use

is intended to foster experimentation with representations with rapid, straightforward sharing
and discussion of the representational strategies and analytic consequences.

Goals of this Document

In this document, the primary focus will be on the logical structure of the NDEx networks, but we
will reference examples expressed in the JSON serialization that is used by the NDEx v1.2 API.
We anticipate creating alternative serializations in the future, especially to enable incremental,
streaming transactions involving networks, but all serializations will express the same logical
structure.

One aspect of NDEx networks is described separately: the Network Provenance History
structure associated with each network is explained in the Network Provenance History
document.

Aspects of the NDEx Network Data Model described in this document include:

• Reification of edges – enabling a node to represent an edge
• Functional term expressions – defining unique controlled vocabulary terms by functional

composition of controlled vocabulary terms.
• Separation of presentation properties from other ‘user’ properties
• Detailed citations – augmented by ‘support’ objects that can specify particular text within

a citation

Network Accession in NDEx

Networks stored on an NDEx server are assigned a 128-bit identifier that is a universally unique
identifier (UUID). All networks are unique objects, regardless of what server they are created on.

The network UUID serves as an accession number across all NDEx servers. Networks can be
accessed on their NDEx server by providing their UUID as a parameter to appropriate API
methods.

The uniqueness of each network implies that copies of networks are different objects and will
have a different UUID. It also facilitates the construction of network provenance histories that
can be used to track the chain of sources and events leading to the current state of a given
network.

Objects of the NDEx Network Data Model

NetworkSummary Brief summary information about the network

Network The full network data structure

Namespace Defines a reference to a controlled vocabulary, such as an external ontology

BaseTerm Defines a controlled vocabulary term used in the network

FunctionTerm Defines a term used in the network by functional composition of other terms

ReifiedEdgeTerm Defines a term denoting an edge within the network for reference by other
network elements

Node A vertex of the network graph structure

Edge An edge, relationship of the network graph structure

Citation A knowledge source – such as a journal article – that supports one or more
Edges or Nodes.

Support Text supporting one or more Edge or Node objects, frequently also specifying
the Citation that was the source of the text.

NdexPropertyValuePair Name-value pair with optional value datatype. An
NdexPropertyValuePair includesdeprecated attributes allowing it to optionally
reference BaseTerm objects to specify controlled vocabulary terms.
Unification with SimplePropertyValuePair is planned for future NDEx releases.

SimplePropertyValuePair Name-value pair.

NetworkSummary

NetworkSummary objects are a subset of Network objects. They are used to convey
basic information about a network in API operations such as a simple GET of a network by id or
when a list of NetworkSummary objects is returned as a search result.

Attribute Datatype Description

description string Text description of the network, same meaning as dc:description

name string Name or title of the network, not unique, same meaning as dc:title

creationTme timeStamp Time at which the network was created

modificationTime timeStamp Time at which the network was last modified

isComplete boolean Set to false while the network is being incrementally created or
modified, true otherwise.

isLocked boolean Content modification permitted only if false

visibility string One of PUBLIC, PRIVATE, DISCOVERABLE. PUBLIC means it can be
found or read by anyone, including anonymous users. PRIVATE is the
default, means that it can only be found or read by users according to
their permissions. DISCOVERABLE means that it can be found but that
users without access must request permissions.

isPublished boolean (planned for NDEx v1.3) If true, network is permanently locked for
content modification but access privileges can be altered.

version string Format is not controlled but best practice is to use string conforming to
Semantic Versioning

nodeCount integer the number of node objects in the network

edgeCount integer the number of edge objects in the network

properties list List of NDExPropertyValuePair objects: describes properties of the
network

presentationProperties list List of SimplePropertyValuePair objects: describes presentation
properties of the network, such as stylesheet information controlling the
display of classes of network elements.

Network

A Network object contains all of the attributes of a NetworkSummaryplus attributes that
organize the eight types of NetworkElement objects that describe the content of the network.
Each type of NetworkElement object is organized into a separate map (hash table, dict,
dictionary, etc), indexed by element id.

Element ids are are unique within the network, but not globally unique. No two elements in a
network will have the same element id, even if they are of different types. For example, all Edge
objects are stored in a map that is the value of the edges attribute of the Network, indexed by
unique element ids. The element ids present in any serialization or other encoding of the
network outside of NDEx are not guaranteed to be preserved when the network is processed in
any way or is stored in the NDEx Server. The NDEx Server and other applications are free to re-
assign element ids as they require, as long as the network remains internally self-consistent.

In the NDEx v1.2 implementation, the API requires that element ids are integer values.

Attribute Datatype Description

namespaces map Namespace objects by element id

baseTerms map BaseTerm objects by element id

functionTerms map FunctionTerm objects by element id

reifiedEdgeTerms map ReifiedEdgeTerm objects by element id

citations map Citation objects by element id

supports map Support objects by element id

nodes map Node objects by element id

edges map Edge objects by element id

Network Elements

Several of the classes of Network Elements (Namespace, Citation, Support, Node, Edge)
include the attributes properties and presentationProperties, lists of property-value pair objects
that enable the association of arbitrary, user or application-defined attributes with the Network
Element. Presentation properties enable the separation of annotations specific to presentation
and graphic display, such as layout coordinates or graphic styles.

Namespace

A Namespace object denotes a controlled vocabulary, such as an ontology, and must define
either a prefix, a uri, or both.

Attribute Datatype Description

id elementId Element id unique within the Network

properties list List of NdexPropertyValuePair objects: describes optional (user-defined)
attributes of the namespace.

presentationProperties list List of SimplePropertyValuePairobjects: optional attributes to describe
graphic presentation of the namespace.

prefix string The prefix string for abbreviated reference to this namespace.

uri string The uri defining the namespace

Term

There are 3 types of Network Elements that are categorized as Term
objects: BaseTerm, FunctionTerm, and ReifiedEdgeTerm. BaseTerm objects denote controlled
vocabulary terms, terms in a defined Namespace. FunctionTerm objects denote concepts by
functional composition of other Terms. ReifiedEdge objects enable reference to edges within the
network by other network elements.

BaseTerm

BaseTerm objects denote terms in specified controlled vocabularies and may be used to define
the meaning of Network Elements such as a Node or the relationship indicated by an Edge.
BaseTerm objects specify the vocabulary by reference to a Namespace object. For example, a
BaseTerm could denote a specific gene symbol in the HGNC official vocabulary of human
genes.

Attribute Datatype Description

id element
id

Element id of this object within the Network

type string type is always ‘BaseTerm’

namespaceId element
id

Element id referencing a Namespace object. If not specified, the BaseTerm is
implicitly in a default namespace for the network

name string The identifier for this controlled vocabulary term (required)

FunctionTerm

FunctionTerm objects denote concepts by the functional composition of other Term objects.
Both the function and the parameters are defined by reference to other terms, including other
FunctionTerm objects. They provide a powerful mechanism for succinct representation of
concepts that are inherently combinatorially explosive, such as modified protein species. The
OpenBEL biological representation language defines all of its terms by functional composition
and OpenBEL networks loaded in NDEx use FunctionTerm objects. FunctionTerm objects can
also be employed in the development of novel representation schemes.

Attribute Datatype Description

id element
id

Element id within the Network

type string type is always ‘FunctionTerm’

functionTermId element
id

Element id of a BaseTerm object denoting the composing function of the
FunctionTerm (required)

parameterIds list List of element ids where each element id refers to a Term object. The
referenced Terms define the parameters of the functional expression. Unlike
most lists of ids used in NDEx objects, the order of the parameter ids is
meaningful – they are the ordered arguments of the function. Any algorithm
manipulating FunctionTerm objects must preserve this order.

ReifiedEdgeTerm

ReifiedEdgeTerm objects denote Edge objects in the Network by reference to the element id of
the Edge. This provides the mechanism by which a Node in aEdge can represent another Edge.
For example, a ReifiedEdgeTerm object can be used to express a relationship between a
concept and a relationship, such as where the abundance of a protein affects the causal
relationship between two other entities, as in “A -| (B -> C)”.

Attribute Datatype Description

id element
id

Element id within the Network

type string type is always ‘ReifiedEdgeTerm’

edgeId element
id

Element id of an Edge, where the specified Edge is “reified” by the ReifiedEdgeTerm,
meaning that it can used as a “stand-in” for the Edge. Used in the case where the
subject Node or object Node of an Edge represents another Edge: the Node’s
representsId attribute will have the value of the element id of the ReifiedEdgeTerm.

Citation

A Citation object describes a knowledge source – such as a journal article – that supports one
or more a Edge or a Node objects in the Network. Citation objects have a similar intent to a
BioPAX “PublicationXref”. The Citation must at define either an identifier for the knowledge
source or a title.

Attribute Datatype Description

id element
id

 Element id within the Network.

type string type is always ‘Citation’

properties list List of NdexPropertyValuePair objects: describes optional (user-defined)
attributes of the Citation.

presentationProperties list List of SimplePropertyValuePairobjects: optional attributes to describe
graphic presentation of the Citation.

identifier string A string identifying the knowledge source cited.

idType string Indicates the type of the identifier, default is ‘URI’. The possible formats
for the identifier are not constrained, but a definitive URI or DOI is best
practice, when possible. Examples of alternative identifiers could
include a journal citation string or an identifier from a particular database
of experimental data or processed results.

title string The title of the knowledge source, same semantics as dc:title. (optional)

contributors list List of strings in which each string identifies an individual who is a
contributor to the cited knowledge source. (optional)

Support

A Support object contains text that supports one or more Edge or Node objects. Supports
typically reference Citation objects to indicate the source of the text. OpenBEL is an example of
a representation language which uses detailed supporting references, but the Support
elements in the NDEx data model is available for use by any Network.

Attribute Datatype Description

id element
id

 Element id within the Network

type string type is always ‘Support’

text string free text describing the evidence for Edge or Node objects that reference the
Support, typically taken as an extract from the abstract or full text of a Citation

citationId element
id

Element id of a Citation object, indicating that the text is derived from the Citation

Edge

An Edge object encodes the relationship between two Node objects in the Network. An Edge
can be annotated with Citations, Supports, and user-defined properties and
presentationProperties.

Attribute Datatype Description

id element
id

Element id within the Network

type string type is always ‘Edge’

properties map List of NdexPropertyValuePair objects: describes optional (user-
defined) attributes of the Edge.

presentationProperties map List of SimplePropertyValuePairobjects: optional attributes to describe
graphic presentation of the Citation.

subjectId element
id

Element id referencing a Node object. Defines the subject, or ‘source’ in
the relationship denoted by the Edge

predicateId element
id

Element id referencing a BaseTerm object. Defines the relationship
denoted by the Edge

objectId elementId Element id referencing a Node object. Defines the object, or target in
the relationship denoted by the Edge

citationIds list List of element ids of Citation objects supporting the Edge

 supportIds list List of element ids of Support objects supporting the Edge

Node

A Node object encodes an entity, a concept – a thing that the Network is about. The meaning of
the Node is defined by its attributes ‘representsId’, ‘aliasIds’, and ‘relatedTermIds’. The ‘name’

attribute of the node can specify a default label for display to users. A Node can also be
annotated with Citations, Supports, and user-defined properties and presentationProperties.

Attribute Datatype Description

id element
id

Element id within the Network

type string type is always ‘Node’

properties list List of NdexPropertyValuePair objects: describes optional (user-defined)
attributes of the Citation.

presentationProperties list List of SimplePropertyValuePairobjects: optional attributes to describe
graphic presentation of the Citation.

name string A preferred display name for the Node. Some nodes may not have a
representsId attribute, in which case the name may also be the closest
approximation of the meaning of the Node – relying on ad hoc
interpretation by humans or applications.

representsId element
id

Element id of a Term defining the primary meaning of the Node

aliasIds list List of element ids of Term objects, each of which denotes an equivalent
concept to the primary meaning of the Node. For example, a gene
symbol and a gene id may be aliases, denoting exactly the same
concept. A protein id, however, is not an alias for a gene symbol. This
attribute has the same intention as a BioPAX aliasXREF.

relatedTermIds list List of element ids of Term objects, each of which denotes a
related concept to the primary meaning of the Node. For example, a
gene symbol and the protein id for its gene product would be related
terms, denoting concepts that are related but not identical. This
attribute has the same intention as a BioPAX relatedXREF.

citationIds list List of element ids of Citation objects supporting the Node

 supportIds list List of element ids of Support objects supporting the Node

NdexPropertyValuePair

The NdexPropertyValuePair object encodes property-value pairs that can be simple string-string
pairs with an optional the dataType attribute to specify the interpretation of the value string.

As of NDEx v1.2, this data structure also supports attributes to reference controlled vocabulary
terms by element ids of BaseTerm objects for the predicate (property), the value, or both. These
attributes are deprecated and will be phased out in subsequent releases.

Attribute Datatype Description

type string type is always ‘NdexPropertyValuePair’

predicateString string The property in the property-value pair

value string The value in the property-value pair

dataType string Specifies the data type of the value, defaults to ‘String’ if this attribute is not set

predicateId element
id

(deprecated) The element id of a BaseTerm representing the property in the
property-value pair.

valueId element
id

(deprecated) The element id of a Term representing the value in the property-
value pair

SimplePropertyValuePair

The SimplePropertyValuePair object encodes property-value pairs that are simple string-string
pairs. As of NDEx v1.2, this data structure is used as elements of the presentationProperties of
Networks and network elements as described above.

Attribute Datatype Description

type string type is always ‘SimplePropertyValuePair’

name string the name of the property

value string the property value

6. Metrics

NDEx Content and Usage Metrics
As of the v1.2 release, June 26, 2015, the NDEx public server (public.ndexbio.org) stored a total
of 383 networks across 203 accounts.

The bulk of these networks were owned by 12 accounts corresponding to organizations that
publish or aggregate network content.

Network Formats

Format Count

XGMML 5

SIF 302

BEL 5

BIOPAX 31

Network Sizes

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

less	 than	
100	

100	 -‐	 199	 200	 -‐	 1999	 2000	 -‐	
19999	

20000	 -‐	
199999	

200000	 -‐	
1999999	

more	 than	
2000000	

7. Provenance

Network Provenance History
The provenance history aspect of an NDEx network is used to document the workflow of events
and information sources that produced the current network. API operations that create or update
networks add default events to the provenance history. Applications can also explicitly modify
the provenance history in order to customize events, controlling the granularity of events
recorded and the level of detail captured.

Motivation
A network can represent assertions of biological relationships that are the results of
experimental, analytic, or curation processes. Networks may in turn serve as inputs to further
processes of analysis and model creation. If the workflow and dependencies on information
sources are clearly documented, researchers may better understand the meaning of the
relationships in the network and are better empowered if they wish to reproduce the analyses
leading to the network. To achieve these goals, networks stored in NDEx can optionally include
a provenance history aspect that can be accessed and managed via the NDEx API.

For example, a network might be derived by an algorithm which finds subnetworks based on
experimental data mapped to entities in a reference network; in this case the application
performing the analysis should record the analysis event in the provenance history of the output
network, including references or descriptions of the algorithm used, the input experimental data,
and a description of the input reference network.

For robustness, the provenance history stores descriptions of ‘ancestor’ networks and other
information sources, not just links to those resources. This preserves the utility of the
provenance history in situations in which some or all of the input information sources are
unavailable or have been modified since they were used in the workflow. Researchers (or
algorithms) can inspect the provenance history of the current network to address questions
about the status of all of the inputs to the workflow.

Related Work
NDEx network provenance history is similar in intent to Synapse Analytical Provenance

Provenance History Structure

A provenance history is a tree structure containing ProvenanceEntity and ProvenanceEvent
objects (Figure 1). It is serialized as a JSON structure by the NDEx API. The root of the tree
structure is a ProvenanceEntity object representing the current state of the network. Each
ProvenanceEntity may have a single ProvenanceEvent object that represents the immediately
prior event that produced the ProvenanceEntity. In turn, linked to network of ProvenanceEvent
and ProvenanceEntity objects representing the workflow history that produced the current state
of the Network. The provenance history records significant events as Networks are copied,
modified, or created, incorporating snapshots of information about “ancestor” networks.

ProvenanceEntity
• uri

• URI of the resource described by the ProvenanceEntity

• This field will not be set in some cases, such as a file upload or an algorithmic event that
generates a network without a prior network as input

• creationEvent

• ProvenanceEvent

• has semantics of PROV:wasGeneratedBy

• properties

• array of SimplePropertyValuePair objects

ProvenanceEvent
• endingAtTime

• timestamp

• has semantics of PROV:endingAtTime

• startingAtTime

• timestamp

• has semantics of PROV:endingAtTime

• inputs

• array of ProvenanceEntity objects

• has semantics of PROV:used

• properties

• array of SimplePropertyValuePair objects

Provenance History and Network Equivalence

The provenance history can be used to infer network equivalence, whether a given network
stored in NDEx has the same content as another network or an external resource. This is
valuable since in the general case, computing equivalence by algorithm may be computationally
expensive or could require network format-specific knowledge.

Two networks on NDEx servers may be inferred to be equivalent if the following conditions are
met:

• One is the ancestor of the other in their provenance histories.

• The events between the ancestor and descendent are all information preserving COPY
operations.

• The ancestor has not been modified since the initial COPY operation.

Similarly, a network may be considered equivalent to an external source in either of the
following cases:

• The network is the output of an UPLOAD event of a file derived from the external source
and the external source has not been modified since the time of the upload.

• The network is an unmodified copy of a network meeting the above criteria.

Provenance Updates by NDEx API Operations

Seven REST API methods perform default updates to the provenance history of a network.
They record basic information about the network (e.g. number of edges, nodes, title, description,
version) and the event (e.g. type, time, username, first name, last name).

addNamespace/network/{networkId}/namespace

Records the added namespace name and value as an event property.

setNetworkProperties/network/{networkId}/properties

Records properties as event properties.

setNetworkPresentationProperties /network/{networkId}/presentationProperties

Records presentation properties as event properties.

updateNetworkProfile/network/{networkId}/summary

Records network name, description, and version as event properties and displays the current
state as node properties.

createNetwork/network/asNetwork

No additional information recorded.

createNetwork/network/asPropertyGraph

No additional information recorded.

uploadNetwork/network/upload

Records filename as an event property.

Network Updates that do NOT Modify Provenance History

The provenance history is NOT updated when:

• Network membership information is changed or when network visibility (e.g. PUBLIC,
PRIVATE, or DISCOVERABLE) is changed.

• The provenance history is explicitly updated by the API.

Reading and Setting Provenance History

An application can read and alter the provenance history without adding any additional event to
the provenance history. The API methods are:

• getProvenance /network/{networkId}/provenance
• setProvenance /network/{networkId}/provenance

Provenance Events vs. Network Modification Times

Any operation that modifies the network, including changes to visibility or provenance also
changes the last modification date of the network.

Changes to network membership – what users have access to the network – do not modify the
network itself and so do not change either the modification date or provenance history.

Properties of ProvenanceEntity and ProvenanceEvent objects
The standard fields in ProvenanceEntity and ProvenanceEvent objects correspond to
relationships defined in the PROV-O ontology. Other property-value pairs can annotate these
objects to provide more information about the entities and events. Any ad hoc pair of strings can
be added as a property-value pair, and the properties used may be idiosyncratic to the recorded
events and entities. However, the use of properties defined in the Dublin Core (DC) metadata
annotations and the Provenance, Authoring and Versioning ontology (PAV) are preferred when
applicable.

It is important to note a difference in the use of these ontologies in an NDEx provenance
structure and the original intent. A ProvenanceEntity is a description of the referenced object,
not the object itself. Therefore, a property such as “dc:title” that is asserted for a
ProvenanceEntity refers to the original entity that the ProvenanceEntity represents. The
provenance history references ancestor networks and other data sources but can also include
self-contained descriptions of those objects that capture their state at the time they were used.

Dublin Core (DC) Properties
• dc:title

• dc:description

• dc:rights

• dc:rightsHolder

• dc:format

PAV Properties
• pav:retrievedFrom

• Direct retrieval – a COPY of the source network with no transformation of the
content.

• pav:importedFrom

• Import with some transformation, as in a file UPLOAD where the source data is
processed to create the network.

• The content reflects the external source but potentially has differences dependent on
the import method.

• pav:derivedFrom

• The network was generated by an operation that transforms the content of the
source.

• pav:sourceAccessedAt

• The network was generated by a transformation operation that consulted the source
as part of the transformation.

• pav:version

• The version of the current network.

• pav:previousVersion

• The previous version. Note that this might be the version of a network that is not in
the provenance history – a version could be created from new sources, not
necessarily as a transformation of an earlier version.

Provenance History Use Cases

Copying Networks

In a copy operation, an application / utility creates a new network (the target) that encodes the
same content as an existing network (the source).

In the resulting target provenance history, the root ProvenanceEntity represents the target and
the copy operation is represented as a ProvenanceEvent of type COPY in which the output is
the root entity and the input is a ProvenanceEntity representing the source.

The ProvenanceEntity representing the source and all of its prior entities and events are copied
from the provenance history of the source.

Information stored in the provenance history about the source is intended to reflect the state of
the source at the time of the copyand should not be updated to reflect subsequent changes in
the source. Information about the source stored in the provenance history is thereby preserved,
regardless of whether the source is later modified or deleted.

Upload / Import Network File

Upload is a special type of import, where the ProvenanceEntity for the source should store
information about the uploaded file in the properties, such as the filename, file type, or data size.

Network Query / Filter

A network created by a query or other operation that retrieves part of the source is a common
type of transformation operation. The new network is derived from the source.

Editing Operations

In any case where the source network has the same UUID as the target, the ProvenanceEvent
is an edit of some type. Because the event can have both startingAt and endingAt properties,
the editing process can span an arbitrary amount of time. The application managing the editing
process can therefore control the granularity of the provenance history. For example, an editing
application could represent a long sequence of edits in a verbose chain of events and
intermediate states or it could simply keep updating the endingAt time as the edits continued. In
both cases, the resulting provenance history would be a valid representation of the workflow,
although one would capture greater detail than the other.

Translation of Network Identifiers

In the case where a utility creates a network that has content equivalent or homologous to the
source but described in a different identifier system (such as gene ids replaced with
corresponding gene symbols), an additional resource describing the identifier mapping is
typically involved. In this case, the mapping resource is also an input to the ProvenanceEvent,
and it is appropriate to use the property pav:sourceAccessedAt to describe the relationship.

Merging Networks

“Merging” in this context means a modification operation in which the information in network A is
augmented by information coming from network B, or where a new network is created from both
A and B. This creates a branched provenance history in which the ProvenanceEvent for the
merge has two inputs, both network A and network B..

8. REST API

Working with Networks Using the NDEx Server API
Scope of this Document
This document covers the primary NDEx Server REST API operations needed to create scripts
and applications working with networks in NDEx. All network-related operations on an NDEx
Server may be performed via the REST API, but we recommend that most users use the NDEx
Web User Interface to perform the following operations:

• Share a network with another user or a group

• Request access to a network

• Upload a network from a file in a supported format

• Export a network to a file in a specified format

Advanced developers may want to incorporate these operations directly into their applications,
but in most cases it will be easier to take advantage of the existing user interface.

This document also intentionally omits discussion of the API methods that use the
‘PropertyGraphNetwork’ format. As of v1.2, that format is used by the CyNDEx Cytoscape App,
but may be deprecated in v1.3, with key aspects of its functionality being shifted to client
libraries in conjunction with new API methods using the upcoming CX (Cytoscape
Cyberinfrastructure Network Exchange) format.

This document mentions Network and NetworkSummary objects that are extensively described
in our NDEx Network Data Model document.

HTTP Transactions and Authentication

The NDEx Server API uses the four common HTTP transactions types: GET, PUT, POST, and
DELETE.

API methods that create, modify, or delete networks always require authentication – a user
must be authenticated based on credentials presented as part of the HTTP request. Further, a
transaction will only succeed if the authenticated user has EDIT or ADMIN permissions for the
specified network. In this document, these operations are all marked Requires Authentication.

API methods that query or otherwise access networks can be used without authentication, but in
that case, they will only succeed for networks that are marked ‘PUBLIC’. If the same method is
performed with an authenticated user, the operation will also succeed for networks for which the
user has READ, EDIT, or ADMIN permissions.

Client Libraries

Client libraries facilitate the creation of NDEx-enabled applications. They manage the handling
of authentication and other aspects of HTTP transactions and provide convenience methods to
invoke NDEx Server API methods.

NDEx Java Client

The NDEx Java Client is available from the GitHub repository https://github.com/ndexbio/ndex-
java-client.

The class NdexRestClient provides basic objects and methods to manage authentication and
to perform GET, POST, PUT, and DELETE operations to an NDEx Server.

The class NdexRestClientModelAccessLayer provides convenience methods corresponding
to each of the NDEx Server API methods.

In this document, we will present the corresponding NdexRestClientModelAccessLayer method
for each NDEx Server API method (where available).

Find a Network by Accession

Each network stored on an NDEx Server is assigned a universally unique identifier – a
UUID. An application can query an NDEx to get summary information about the network (and
determine if it is present on the NDEx) by the UUID using the getNetworkSummary method.

getNetworkSummary
GET : /network/{networkId}

Retrieves a NetworkSummary object based on the network specified by ‘networkId’. This
method returns an error if the network is not found or if the authenticated user does not have
READ permission for the network.

Java Client Method
publicNetworkSummarygetNetworkSummaryById(String	 networkId)	

Find a Network by Search

An application can retrieve a list of NetworkSummary objects corresponding to networks
matching a text query using the searchNetwork method. Networks are matched based on the
text in the name and description fields, plus the strings of node names and controlled
vocabulary terms used in the network. As of NDEx v1.2, the underlying text indexing and search
is performed by a Lucene engine. The search can also be constrained to networks owned by a
specified account. The NetworkSummary objects returned by the query provide useful
information including the network UUID, name, description, and counts of nodes and edges.

searchNetwork
POST : /network/search/{skipBlocks}/{blockSize}

This method returns a list of NetworkSummary objects based on a POSTed query JSON object.
The maximum number of NetworkSummary objects to retrieve in the query is set by the integer
value ‘blockSize’ while ‘skipBlocks’ specifies number of blocks that have already been read.

The query can specify the following parameters:

searchString Required. A whitespace-delimited string of search terms that is handled
according to Lucene search string protocol.

permission Optional. String set to either ‘ADMIN’, ‘WRITE’ or ‘READ’. If set to ‘WRITE’, the
search will only return networks for which the authenticated user has permission
to edit. By default, the search will return networks that are readable or which
have been marked DISCOVERABLE.

includeGroups Optional. Boolean value, defaults to false. If a user is a member of a group and
the group has permissions to a network, then the user can access the network
according to those permissions. If includeGroups is true, the search will also
return networks based on the authenticated user’s group memberships.

accountName Optional. String value. If the accountName parameter is provided, then the
search will be constrained to networks owned by that account.

canRead Optional. Boolean value, defaults to false. By default, the search will return
networks that are marked DISCOVERABLE as well as the networks that the user
can read. But If the canRead parameter is true, the DISCOVERABLE networks
will be excluded.

Java Client Methods:

public	 List<NetworkSummary>findNetworks(

String	 searchString,	

booleancanRead,	

String	 accountName,	

intskipBlocks,	

intblockSize)	

public	 List<NetworkSummary>findNetworks(

String	 searchString,	

booleancanRead,	

String	 accountName,	

Permissions	 permissionOnAcc,	 booleanincludeGroups,	

intskipBlocks,	

intblockSize)	

searchNetworkByPropertyFilter
POST : /network/searchByProperties

Requires Authentication

This method returns a list of NetworkSummary objects in no particular order which have
properties (metadata) that satisfy the constraints specified by a posted JSON query object. The
query object has the following format:
{	

“properties”:	

[

{“propertyName”:	 string,	

“value”:	 	 string},	

…	

],	

“admin”:	 string,	

“limit”	 :	 integer	

}	

	

properties Required. A list of objects associating a propertyName with a value. Networks that
have at least one matching property-value pair in their properties will be returned by
the search.
As of NDEx v1.2, the matching of property values is limited to exact string
equivalence.

admin Optional. String value. When admin has a null value, the method returns all networks
that meet the search criteria. If an admin value is provided, it is treated as an account
name and only networks owned by that user account (and meeting search criteria)
will be returned.

limit Optional. Integer value. If “limit” has a value n where n>0, up to n networks will be
returned in the result. n<=0 means no size limit in the result.

Get a Network

The getCompleteNetwork method enables an application to obtain an entire network as a JSON
structure. This is performed as a monolithic operation, so care should be taken when requesting
very large networks. Applications can use the getNetworkSummary method to check the node
and edge counts for a network before attempting to use getCompleteNetwork. As an
optimization, networks that are designated read-only (see Make a Network Read-Only below)
are cached by NDEx for rapid access.

getCompleteNetwork

GET : /network/{networkId}/asNetwork

This method retrieves the entire network specified by ‘networkId’ as a Network object, including
the information in the NetworkSummary for the network.

Java Client Method:
public	 Network	 getNetwork(String	 id)	

Query a Network

queryNetwork
POST : /network/{networkId}/asNetwork/query

Retrieves a ‘neighborhood’ subnetwork of the network specified by ‘networkId’. The query finds
the subnetwork by a traversal of the network starting with nodes associated with identifiers
specified in a POSTed JSON query object with the following attributes:

searchString A whitespace delimited string of search terms which are matched vs. (1) the
controlled vocabulary terms used in the network and (2) names of nodes in the
network. A set of initial nodes is selected based on association with matched terms
or simple name match. The query selects edges based on traversal from those
initial nodes.

depth Integer value between 1 and 3. Sets the maximum number of traversal steps from
the initial nodes.

The subnetwork is returned as a JSON Network object containing the selected edges plus any
other network elements relevant to the edges.

Java Client Methods:
public	 Network	 getNeighborhood(

String	 networkId,	

String	 searchString,	

int	 depth)	

	 	

public	 Network	 getNeighborhood(

String	 networkId,	

SimplePathQuery	 query)	

queryNetworkByEdgeFilter
POST : /network/{networkId}/asNetwork/prototypeNetworkQuery

This method retrieves a filtered subnetwork of the network specified by ‘networkId’ based on a
POSTed JSON query object. The returned subnetwork contains edges which satisfy both the
edgeFilterand the nodeFilter up to a specified limit. The subnetwork is returned as a Network
object containing the selected edges plus all other network elements relevant to the edges.

edgeFilter The query will select edges which have any property that satisfies one or more of the
propertySpecifications of the edgeFilter.
One reserved property name is handled specially:“ndex:predicate” : the value in the
propertySpecification is matched vs. the name of the predicate (relationship type)
assigned to the edge. This enables the important case in which edges are filtered

based on their relationship.

nodeFilter The query will select edges which connect nodes satisfying the nodeFilter. The
‘mode’ attribute of the nodeFilter controls whether the filter is applied to the source
node, target node, both, or either.
An edge satisfies the nodeFilterif:mode = ‘Source’ and the source node has
properties satisfying any propertySpecification in the list.mode = ‘Target’ and the
target node has properties satisfying any propertySpecification in the list.mode =
‘Both’ and both source and target nodes have properties satisfying any
PropertySpecification in the list.mode = ‘Either’ and either source and target nodes
have properties satisfying any PropertySpecification in the list.
Three reserved property names are handled specially:“ndex:nodeName” : The
value in the propertySpecification is matched vs. the name of the
node.“ndex:nameOrTermName” : The value in the propertySpecification is matched
vs. either the name of the node or the name of a controlled vocabulary term that the
node represents.“ndex:functionTermType” : The value in the propertySpecification
is matched vs. the name of the controlled vocabulary term that is the function of the
FunctionTerm that the node represents. This effectively enables filtering on the type
of the node for OpenBEL format networks and others that employ FunctionTerms.

edgeLimit Integer value. The query terminates and returns an error when the number of edges
found exceeds this limit. When edgeLimit is set to 0 or to a negative integer, there is
no limit, all edges that satisfy the query criteria will be returned.

The query is only valid if at least one filter is not null and non-empty. An error will be returned if
both the nodeFilter and edgeFilter attributes are nulls or have no property specifications.

Each propertySpecification in a filter list is a property value pair in the following format:

{	

“name”	 :	 <string>,	

“value”	 :	 <string>	

}	 	

All matches of node or edge properties vs. propertySpecifications are case-insensitive.
Query JSON:
{	

“nodeFilter”:	 {	

“propertySpecifications”	 	 :	 [<PropertySpecifications>],	

“mode”	 :	 <mode>	

},	

“edgeFilter:	 {	

“propertySpecifications”	 	 :	 [<PropertySpecifications>]	

},	

“edgeLimit”	 :	 <integer>,	

“queryName”	 :	 “My	 query”	

}	

getEdges
GET : /network/{networkId}/edge/asNetwork/{skipBlocks}/{blockSize}

This method retrieves a subnetwork of the network specified by ‘networkId’ based on a ‘block’ of
edges, where a ‘block’ is simply a set that is contiguous in the network as stored in the specific
NDEx Server. The maximum number of edges to retrieve in the query is set by ‘blockSize’
(which may be any number chosen by the user) while ‘skipBlocks’ specifies the number of
blocks of edges in sequence to ignore before selecting the block to return. The subnetwork is
returned as a Network object containing the edges specified by the query plus all of the other
network elements relevant to the edges.

This method is used by the NDEx Web UI to sample a network, enabling the user to view some
of the content of a large network without attempting to retrieve and load the full network. It can
also be used to obtain a network in ‘chunks’, but it is anticipated that this use will be superseded
by upcoming API methods that will enable streaming transfers of network content.

Java Client Method:
public	 Network	 getEdges(String	 id,	 intskipBlocks,	 intedgesPerBlock)	

Get the Provenance History for a Network

getProvenance
GET : /network/{networkId}/provenance

This method retrieves the ‘provenance’ attribute of the network specified by ‘networkId’, if it
exists. The returned value is a JSON ProvenanceEntityobject which in turn contains a tree-
structure of ProvenanceEvent and ProvenanceEntity objects that describe the provenance
history of the network. See the document NDEx Provenance History for a detailed description of
this structure and best practices for its use.

Java Client Method:
publicProvenanceEntitygetNetworkProvenance(String	 networkId)	

	

Create a Network

createNetwork
POST : /network/asNetwork

Requires Authentication

This method creates a new network on the NDEx Server based on a POSTed Network object.
An error is returned if the Network object is not provided or if the POSTed Network does not
specify a name attribute. An error is also returned if the Network object is larger than a
maximum size for network creation set in the NDEx server configuration. A NetworkSummary
object for the new network is returned so that the caller can obtain the UUID assigned to the
network.

Java Client Method:
publicNetworkSummarycreateNetwork(Network	 network)	

Update the Network Profile Information

updateNetworkProfile
POST : /network/{networkId}/summary

Requires Authentication

This method updates the profile information of the network specified by networkId based on a
POSTed JSON object specifying the attributes to update. Any profile attributes specified will be
updated but attributes that are not specified will have no effect – omission of an attribute does
not mean deletion of that attribute. The network profile attributes that can be updated by this
method are: ‘name’, ‘description’, ‘version’, and ‘visibility’.

Java Client Method:
Note the Java convenience method takes as an argument a NetworkSummary object populated
with only the profile attributes that should be updated:

publicNetworkSummaryupdateNetworkSummary(

NetworkSummarynetworkSummary,	

String	 networkId)	

	

Update an Entire Network

updateNetwork
PUT : /network/asNetwork

Requires Authentication

This method updates an existing network with new content. The method takes a Network JSON
object as the PUT data. The Network object must have its UUID property set in order to identify
the network on the server to be updated. This condition would already be satisfied in the case
of a Network object retrieved from NDEx. This method errors if the Network object is not
provided or if its UUID does not correspond to an existing network on the NDEx Server. It also
errors if the Network object is larger than a maximum size for network creation set in the NDEx
server configuration. A NetworkSummary JSON object corresponding to the updated network is
returned.

Java Client Method:
publicNetworkSummaryupdateNetwork(Network	 network)	

Update the Properties of a Network

setNetworkProperties
PUT : /network/{networkId}/properties

Requires Authentication

Updates the ‘properties’ field of the network specified by ‘networkId’ to be the list of
NdexPropertyValuePair objects in the PUT data.

Modify the Provenance History for a Network

setProvenance
PUT : /network/{networkId}/provenance

Requires Authentication

Updates the ‘provenance’ field of the network specified by ‘networkId’ to be the
ProvenanceEntity object in the PUT data. The ProvenanceEntity object is expected to represent

the current state of the network and to contain a tree-structure of ProvenanceEvent and
ProvenanceEntity objects that describe the networks provenance history.

Java Client Method:
publicProvenanceEntitysetNetworkProvenance(

String	 networkId,	

ProvenanceEntity	 provenance)	

Make a Network Read-Only

The ‘readOnly’ status of a network can be controlled by an associated system flag that can be
set via a general purpose API method. When the readOnly status of a network is true, it cannot
be modified by any API methods. (Note that changing the permissions of a network – such as
sharing it with another user – does not constitute a modification of the network).
An additional effect of making a network readOnly is that it enables the NDEx Server to optimize
the storage and indexing of the network. In NDEx v1.2, when a network is flagged as readOnly,
the NDEx Server initiates a background task to cache a JSON serialized version of the network
for rapid retrieval, thereby making retrieval of the entire network dramatically faster. (But not
changing the behavior of queries that retrieve subnetworks). The cached file is removed if the
readOnly flag is reset to false.

setNetworkFlag
GET : /network/{networkId}/setFlag/{parameter}={value}

Requires Authentication

Set the system flag specified by ‘parameter’ to ‘value’ for the network with id ‘networkId’. As of
NDEx v1.2, the only supported parameter is readOnly={true|false}

Java Client Method:
public	 String	 setNetworkFlag(

String	 networkId,	

String	 parameter,	

String	 value)	

Delete a Network

deleteNetwork

DELETE : /network/{networkId}

Requires Authentication

Deletes the network specified by networkId. There is no method to undo a deletion, so care
should be exercised. A user can only delete networks that they own.

Java Client Method:
public	 void	 deleteNetwork(String	 id)	

9. CyNDEx

CyNDEx – The NDEx Cytoscape App – Prototype Tutorial
Last updated: June 16, 2015

Overview

The NDEx Cytoscape App (CyNDEx) provides a mechanism for you to take any network in
Cytoscape and upload it to NDEx. You can also download networks from NDEx to Cytoscape.
The goal of CyNDEx is to be both easy to install and easy to use. As of June 16, 2015, the
CyNDEx was available for testing upon request, but please consult the online documentation at
www.ndexbio.org for the latest status of CyNDEx.

Why Use This App?

CyNDEx allows you to transfer your networks between Cytoscape, the leading desktop solution
for visualizing biological networks, and NDEx.

What Sort of Networks Can I Store?

Although NDEx was created with the intention of storing, sharing, and using biological networks,
any kind of network can be stored in NDEx.

Getting Started

Before you can CyNDEx, you must have Cytoscape 3.1.1 or better installed along with 64-bit
Java 7. (As of June 2015, Cytoscape is not guaranteed to work with Java 8) You also must
ensure that your JAVA_HOME environmental variable is set to Java 7.

1. To install Java 7, go here.
2. For instruction on how to set JAVA_HOME, go here.
3. To install Cytoscape 3.1.1 or later, go here.

Installing CyNDEx

Now that you have Cytoscape installed and Java 7 setup correctly, it is time to install CyNDEx.
The latest version is currently alpha16 and it is available upon request. To request the
App, please submit a CyNDEx Request form. Once you have obtained the .jar install file from
us, follow these steps:

1. Open up Cytoscape and select App Manager from the Apps menu…

2. Choose Install from File…

3. Select the .jar file that you obtained from us and install it.

4. Once the App Manager will indicate that the status of CyNDEx is installed, you can close
the App Manager.

5. Now, under the Apps menu in Cytoscape, you will see an NDEx menu with 3 options.

Using CyNDEx

By default, you can anonymously download any “public” networks from the PUBLIC NDEx
SERVER to Cytoscape using the CyNDEx you just installed; however, you will not be able to
download “private” networks or upload any networks from Cytoscape to NDEx unless you are
logged in to your NDEx Account. Therefore, in order to use the full functionalities of CyNDEx,
you need an NDEx account. This tutorial was designed assuming that you already have an
NDEx Account.

For instructions on how to create and NDEx Account, go here. Once you have registered your
NDEx Account, proceed with the following instructions:

- Log in to NDEx

1. In Cytoscape, click the Apps menu, select NDEx and then click Change NDEx Source…

2. Make sure that NDEx Public is selected and click Edit

3. Enter your username and password and click Save

4. Finally, click the Connect button in the bottom right corner and you will get a confirmation
message that indicates that your username and password was correctly recognized.

- Download (import) networks from NDEx

1. Choose the Import Networks from NDEx menu item.

2. On the Find Networks screen, you can either select one of the networks on the list or
search for more specific networks. For example, you can type the word metabolism in the

search box. Then make sure the “Metabolism of RNA” network is selected and press the Select
Network button.

3. By default 25 edges out of 4344 edges are displayed. At this point, you could download
the entire network, download these 25 edges, or do a query on the network to retrieve a subset
of edges. Right now, we are going to download the entire network; to do so, make sure that the
entire network radio button is selected and click Load.

4. After you begin your download, you will end up again on the Find Networks dialog. Select
the “Metabolism of RNA” network and perform a query by entering in the word “PHAX” in the
Query box and hitting enter (or clicking Run Query). In the bottom panel, you will see five edges.
Now, change the name of the network to load to “PHAX in Metabolism of RNA”, confirm that the
“Selected Subnetwork” radio button is selected, and click “Load”.

5. After this, you will once again find yourself in the Find Networks dialog. We are done
loading networks and now want to view them in Cytoscape. Click the Done Loading Networks
button in the bottom right corner so that we can see what we have imported in Cytoscape.

- Visualize downloaded networks in Cytoscape

Rearranging the network view windows in Cytoscape, we see that both networks we just
downloaded look like they consist of 1 single node, although we know that one of them has over
4000 thousand edges and the other has 5 edges. The reason for this odd behavior is that
neither of these two networks had any presentation properties set. Therefore, they appear in a
simplified manner in Cytoscape.

In order to properly visualize a downloaded network, we need to apply a visualization layout.

1. To do so, just select a network, open the Cytoscape Layout menu and choose the
Prefuse Force Directed Layout item.

2. After the layout has been applied, you will see much more elaborate looking networks…

Upload (export) networks to NDEx

Now, we are going to perform the final step in our tutorial: exporting a network to NDEx.
Although we illustrate how to upload the “PHAX in Metabolism of RNA” network, the same exact
procedure can be applied to any other networks you have been working on in Cytoscape,
regardless of their provenance. Let’s get started!

1. First, select the “PHAX in Metabolism of RNA” network by clicking on its title bar, then
open the Apps menu, select NDEx and click on Export Current Network to NDEx.

2. A window will appear which tells you which NDEx SERVER you are currently connected
to, what users account that network will be exported to as well as the size of the network. The
only option available is to change the name of the network (red arrow). In this case, we will keep
the name of the network the same and click the Upload Network to NDEx button

3. Done! You can now log in to your NDEx account and see that your “PHAX in Metabolism
of RNA” network is displayed in your personal account page.
With NDEx and CyNDEx, you can easily share your networks with collaborators as well as use
and improve networks shared by others. Tutorials and detailed user documentation for NDEx is
available in the Documentation page on our website.

10. NDEx Sync

NDEx Sync: A Network Copier Utility
NDEx Sync is a command line utility that enables users to copy networks from one NDEx
account (the source NDEx) to another (the target NDEx). Please consult the online
documentation at www.ndexbio.org for the latest instructions for obtaining and using NDEx
Sync.

Requirements
• Platform: Linux or MacOS

• Java 7 installed

• Network access to both the source NDEx and target NDEx.

License and Source Code
NDEx Sync is open-source software available under a BSD license. The source code is hosted
on GitHub at https://github.com/ndexbio/ndex-sync

Running the NDEx Sync
NDEx Sync is used via the shell script /opt/ndex/lib/ndex-copier.sh

The script takes a single argument: a directory containing ‘copy plan’ files.

bash	 ndex-‐copier.sh	 /users/user12/my-‐copy-‐scripts	

When run, the script reads and attempts to execute each copy plan file in the directory.

The NDEx Sync script can be run manually or can be executed periodically via cron or other
scheduling facilities to copy new or modified networks from the source NDEx, creating or
updating networks on the target NDEx.

How NDEx Sync Works
NDEx Sync is like a file-mirroring utility, but with an important difference: the copied networks
are not exact duplicates of the source networks.

• Copied networks are assigned new UUIDs: every network stored in an NDEx server has
a globally unique identifier and can be referenced by that identifier at its host NDEx.

• NDEx Sync updates (or creates, if necessary) the network’s provenance history, adding
a “provenance event” that documents the fact of the copying.

The copied networks are therefore documented as distinct entities, copied at a specific time
from a uniquely identified source. The provenance history provides a structure to document the
events leading to the current state of a network. Applications using NDEx are not required to
maintain the provenance history for networks that they manipulate, but it is encouraged as a
standard practice and will be supported by NDEx utilities.

For each source network that is selected as a candidate for copying, NDEx Sync examines the
provenance history of each network in the target account to determine:

• Was this target network copied from the source network?

• Is the target Out-Of-Date?

The default behavior of NDEx Sync is that it will copy the source network to the target account if
there is no copy of the source network in the target account OR if the only copies are Out-Of-
Date or have been modified.

Update of Networks by NDEx Sync
The default behavior of NDEx Sync is conservative, never overwriting or deleting any network in
the target directory. This behavior can be overridden by the copy plan parameter
updateTargetNetwork, specifying that NDEx Sync should updatetarget networks that are
identified as unmodified, out-of-date copies of the specified source networks.

In an update, the target network keeps its UUID but its contents are replaced by the contents of
the source network and the provenance history is handled in the same manner as in a default,
non-update copy event. The updated network may be accessed by that UUID and any new
request will obtain the updated content.

Using NDEx Sync to update networks is only appropriate for situations in which the target
network is intended as a cache of the source, where users want to obtain the latest version of
the source content and where they do not expect the content of the network to be consistent
over time.

Updates of Read Only Networks
By default, updates will NOT be performed if the target network has readOnly == true. The
updateReadOnlyNetwork configuration parameter in a copy plan overrides this behavior. This
handles the case in which NDEx Sync is used to maintain a local copy of a remote resource and
where the local copy is intended as a read-only reference.

Out-Of-Date Criteria
The criteria for “out-of-date” are as follows:

• Calculate latestSourceDate as the later of modification date and the last provenance
history event end date for the source network.

• Calculate earliestTargetDate as the earlier of modification date and the last provenance
history event end date for the target network.

• iflatestSourceDate>earliestTargetDate, target is out-of-date

Last Modification Date
• The lastModificationDate field of a network is updated when:

o There is a change to any network element, including properties, presentation
properties

o There is a change to intrinsic special “profile” properties

§ name

§ description

• The lastModificationDate does not update on:

o Changes to provenance history

o Changes to permissions

o Change to read-only status

o Change to visibility

What is Copied with a Network
• Copied:

o All network elements, including properties, presentation properties are copied.

• Not Copied:

o Permissions

o Visibility

o UUID

o Modification time, creation time

o readOnly status

• Copied but modified:

o Provenance History

Copy Plans
NDEx Sync ‘copy plans’ specify:

• An account and credentials for the source NDEx.

• An account and credentials for the target NDEx.

• The criteria to select networks on the source NDEx, which can be one of:
o A query to find networks matching search text.

o A query to find networks administered by an account AND matching search text.

o A list of network UUIDs.

• The updateTargetNetwork parameter

o The possible values of updateTargetNetwork argument are “true” or “false”.

o The default value of this argument (i.e., if is missing from the copy plan) is “false”.

o If updateTargetNetworkis set to “true”, NDEx Sync should check whether the
target server account specified in the copy plan contains a network that was
copied earlier from the source server, and decide whether to update the network
in the target server account or not. In case the network only exists in the source
server account and not in the target account, the network gets copied to the
target account.

• The updateReadOnlyNetwork parameter

o The value of updateReadOnlyNetwork argument is “true” or “false”.

o Default value (if the argument is missing from the copy plan) is “false”.

o If updateReadOnlyNetworkis true and the target account specified in the copy
plan has the Administrator privileges for the target network to be updated then
the target network can be updated even if it is set to readOnly = true. In this
case, NDEx Sync changes the read-only flag to false, updates the network, and
changes the read-only flag back to true.

o The updateReadOnlyNetwork parameter is only used if updateTargetNetwork
is set to true.

Notes on Updates: NDEx Sync can only update networks in the target server account if the
account specified by the username in the target element in the copy plan has Administration
privileges for the networks to be updated.

Query Copy Plan

• Source networks are identified based on their title, description, or content matching a
query string.

• The user account for the source must have read access to each source network.

In the example copy plan below, networks matching “cal*” are copied from the public NDEx to
the user2 account on an NDEx running on the local machine.

• queryString: search text to find networks.

• queryLimit: a maximum number of networks to copy is specified.

o This is useful largely as a brake on runaway copying – if the queryString matched
some unanticipated, enormous number of networks, the script would still be
limited.

{	

	 	 	 	 "planType":	 "QueryCopyPlan",	

	 	 	 	 "source":	 {	

	 	 	 	 	 	 	 	 "route":	 "http://www.ndexbio.org/rest",	

	 	 	 	 	 	 	 	 "username":	 "user1",	

	 	 	 	 	 	 	 	 "password":	 "pwd00123"	

	 	 	 	 },	

	 	 	 	 "target":	 {	

	 	 	 	 	 	 	 	 "route":	 "http://localhost:8080/ndexbio-‐rest",	

	 	 	 	 	 	 	 	 "username":	 "user2",	

	 	 	 	 	 	 	 	 "password":	 "pwd980098"	

	 	 	 	 },	

	 	 	 	 "queryString":	 "cal*",	

	 	 	 	 "queryLimit":	 "10",	

	 	 	 	 "updateTargetNetwork":	 "false",	

	 	 	 	 "updateReadOnlyNetwork":	 "false"	

}	

	

Query Copy Plan with Account
• sourceAccount: Source networks are limited to those administered by the specified

account name.

• To copy all the networks for a given account, the queryString can be “”

In the copy plan example below, all networks (up to 10) from the user3 account are copied from
the public NDEx to the user2 account on an NDEx running on the local machine.
{	

	 	 	 	 "planType":	 "QueryCopyPlan",	

	 	 	 	 "source":	 {	

	 	 	 	 	 	 	 	 "route":	 "http://www.ndexbio.org/rest",	

	 	 	 	 	 	 	 	 "username":	 "user1",	

	 	 	 	 	 	 	 	 "password":	 "pwd00123"	

	 	 	 	 },	

	 	 	 	 "target":	 {	

	 	 	 	 	 	 	 	 "route":	 "http://localhost:8080/ndexbio-‐rest",	

	 	 	 	 	 	 	 	 "username":	 "user2",	

	 	 	 	 	 	 	 	 "password":	 "pwd980098"	

	 	 	 	 },	

	 	 	 	 "queryString":	 "",	

	 	 	 	 "queryLimit":	 "10",	

	 	 	 	 "queryAccountName":	 "user3",	

	 	 	 	 "updateTargetNetwork":	 "false",	

	 	 	 	 "updateReadOnlyNetwork":	 "false"	

}	

Network ID Copy Plan
• idList: list of UUIDs to identify source networks.

• The user account for the source must have read access to each source network.

In this example, the network 5bca3218-28ca-11e4-9032-90b11c72aefa is copied from the public
NDEx to the user2 account on an NDEx running on the local machine.
{	

	 	 	 	 "planType":	 "IdCopyPlan",	

	 	 	 	 "source":	 {	

	 	 	 	 	 	 	 	 "route":	 "http://www.ndexbio.org/rest",	

	 	 	 	 	 	 	 	 "username":	 "user1",	

	 	 	 	 	 	 	 	 "password":	 "pwd00123"	

	 	 	 	 },	

	 	 	 	 "target":	 {	

	 	 	 	 	 	 	 	 "route":	 "http://localhost:8080/ndexbio-‐rest",	

	 	 	 	 	 	 	 	 "username":	 "user2",	

	 	 	 	 	 	 	 	 "password":	 "pwd980098	 	 	 	 	 	 	 	 	 	 	 	 	 },	 	 	 	 	 "	

idList	 "	 :	 ["	

	 	 	 	 	 	 	 	 5	 bca3218	 -‐	 28	 ca	 -‐	 11e4	 -‐	 9032	 -‐	 90	 b11c72aefa	 "],	 	 	 	 	 "	

updateTargetNetwork	 "	 :	 "	

false	 ",	

	 	 	 	 	 	 	 	 "updateReadOnlyNetwork":	 "false"	

	 	 	 	 }	

}	

Limitations
NDEx Sync can fail to copy very large networks. This is because it operates by first obtaining
the all the data from the source network in a single REST request and then stores the data to
the target NDEx in a single REST request.

This simple strategy results in the in-memory instantiation of the entire network at the source
NDEx, on the copying machine, and at the destination NDEx. Failure can occur when the
process exceeds the available memory at any of these stages. Future versions of NDEx Sync
will transition to use CX-based streaming, incremental NDEx server network transfer
mechanisms as they become available, thereby limiting the memory footprint at each stage.

